H(1/2)=-3x^2-11x+4

Simple and best practice solution for H(1/2)=-3x^2-11x+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(1/2)=-3x^2-11x+4 equation:



(1/2)=-3H^2-11H+4
We move all terms to the left:
(1/2)-(-3H^2-11H+4)=0
We add all the numbers together, and all the variables
-(-3H^2-11H+4)+(+1/2)=0
We get rid of parentheses
3H^2+11H-4+1/2=0
We multiply all the terms by the denominator
3H^2*2+11H*2+1-4*2=0
We add all the numbers together, and all the variables
3H^2*2+11H*2-7=0
Wy multiply elements
6H^2+22H-7=0
a = 6; b = 22; c = -7;
Δ = b2-4ac
Δ = 222-4·6·(-7)
Δ = 652
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{652}=\sqrt{4*163}=\sqrt{4}*\sqrt{163}=2\sqrt{163}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-2\sqrt{163}}{2*6}=\frac{-22-2\sqrt{163}}{12} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+2\sqrt{163}}{2*6}=\frac{-22+2\sqrt{163}}{12} $

See similar equations:

| 2/3x-1/4=5/6x | | 6-3+4x+1=2x+7 | | 10+3-6c=-4c-3 | | 6u-6=3u | | 2x^2+8=121.5 | | 35v^2+75v-60=0 | | 2.x+x=70 | | 2+6j=-1+7j | | 74-1x=98-2x | | 6-3+4x+1=3x+7 | | -8k=4-10k | | -4w-9=-7w-9 | | -7v=-6-6v | | 38a^2+31a-112=-7a+8a^2 | | 48-12x=6 | | 10b=9b+5 | | 10(1.5x)+40x=700 | | 5x+34=2+72 | | 7c=6c+3 | | 8v=10v-8 | | B. x2–2=12 | | 5x+34=2x+76​ | | 2y-26=22+30y | | .80=300,000-x/150,000 | | 1.3(8-n)=12(n+3) | | F(2)=-3x^2-11x+4 | | 23-(2c+2)=2(c+2)+3c | | 2y–26=22+33y | | c/6=c-10/7 | | 3G-17k=23 | | 2/3(x+5)=1/2x+7/3 | | 3x+6=2x+42 |

Equations solver categories